Spatial Patterns in Catchment Hydrology

Observations and Modelling

For many years now, modelling tools have been available to simulate spatially distributed hydrological processes. These tools have been used for testing hypotheses about the behaviour of natural systems, for practical applications such as erosion and transport modelling, and for simulation of the effect of land use and climate change. However, so far the quality of the simulations and spatial process representations has been difficult to assess because of a lack of appropriate field data.

Spatial Patterns in Catchment Hydrology: Observations and Modelling brings together a number of recent field exercises in research catchments, that illustrate how the understanding and modelling capability of spatial processes can be improved by the use of observed patterns of hydrological response. In addition the introductory chapters review the nature of the hydrological variability, and introduce basic concepts related to measuring and modelling spatial hydrologic processes. This introductory material provides the conceptual and theoretical background needed to move into this exciting area of research for a general earth sciences/water engineering audience. The book demonstrates that there is rich information in patterns that provide much more stringent tests of the models and much greater insight into hydrological behaviour than traditional methods.

Written in an intuitive and coherent manner, the book is ideal for researchers, graduate students and advanced undergraduates in hydrology, and a range of water related disciplines such as physical geography, earth sciences, and environmental and civil engineering as related to water resources and hydrology.

Rodger Grayson is an Associate Professor and Senior Research Fellow at the Center for Environmental Applied Hydrology and the Cooperative Research Center for Catchment Hydrology, both of which are in the Department of Civil and Environmental Engineering at the University of Melbourne. His professional interests include research, teaching and consulting related to environmental hydrology, the modelling and monitoring of water quality and quantity from research catchment to continental scales, and integrated catchment management. He has published over 100 papers and reports in international and national journals and conferences, as well as an edited book, several book chapters and this current book. He is an associate editor of Water Resources Research and the Journal of Hydrology.

Günter Blöschl is an Associate Professor at the Institute of Hydraulics, Hydrology and Water Resources Management of the Technical University of Vienna. His professional interests include measuring and modelling spatial hydrologic processes at a range of scales as well as engineering hydrology and water resources management. He is an author of over 100 scientific papers and has received the Schrödinger and Lise Meitner awards from the Austrian Science Foundation. He is an associate editor of Water Resources Research, the Journal of Hydrology and an editorial board member of Environmental Modelling and Software. He is a Vice President of sections of both the European Geophysical Society and the International Association of Hydrological Sciences.
Spatial Patterns in Catchment Hydrology

Observations and Modelling

Edited by

RODGER GRAYSON
University of Melbourne

GÜNTER BLÖSCHL
Technische Universität Wien
Contents

Preface .. page vii
List of Contributors .. xi

PART ONE. FUNDAMENTALS

1 Spatial Processes, Organisation and Patterns .. 3
 Rodger Grayson and Günter Blöschl

2 Spatial Observations and Interpolation ... 17
 Günter Blöschl and Rodger Grayson

3 Spatial Modelling of Catchment Dynamics ... 51
 Rodger Grayson and Günter Blöschl

4 Patterns and Organisation in Precipitation ... 82
 Efi Foufoula-Georgiou and Venugopal Vuruputur

5 Patterns and Organisation in Evaporation ... 105
 Lawrence Hipps and William Kustas

PART TWO. CASE STUDIES

6 Runoff, Precipitation, and Soil Moisture at Walnut Gulch 125
 Paul Houser, David Goodrich and Kamran Syed

7 Spatial Snow Cover Processes at Kühtai and Reynolds Creek 158
 David Tarboton, Günter Blöschl, Keith Cooley, Robert Kirnbauer and Charlie Luce

8 Variable Source Areas, Soil Moisture and Active Microwave Observations at Zwalmbeek and Coët-Dan ... 187
 Peter Troch, Niko Verhoest, Philippe Gineste, Claudio Paniconi and Philippe Mérot

9 Soil Moisture and Runoff Processes at Tarrawarra 209
 Andrew Western and Rodger Grayson

10 Storm Runoff Generation at La Cuenca .. 247
 Robert Vertessy, Helmut Elsenbeer, Yves Bessard and Andreas Lack
Contents

11 Shallow Groundwater Response at Minifelt 272
 Robert Lamb, Keith Beven and Steinar Myrabø

12 Groundwater–Vadose Zone Interactions at Trochu 304
 Guido Salvucci and John Levine

PART THREE. IMPLICATIONS

13 Towards a Formal Approach to Calibration and Validation 329
 of Models using Spatial Data
 Jens Christian Refsgaard

14 Summary of Pattern Comparison and Concluding Remarks 355
 Rodger Grayson and Günter Blöschl

References 368
Index 397